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Abstract—Intensity model with blur effects are widely 

employed to accurately simulate the imaging process of a star 

simulator used for attitude determination and guiding 

feedback. The model is computationally intensive and the time 

requirements are proportional to the number of stars in the 

simulation, imposing great demands of computing power for 

realistic uses.  

This paper presents two star simulators using Graphic 

Processing Units (GPUs). We analyze the parallelism inherent 

in the intensity model and leverage a massive number of 

computing cores on GPU to efficiently exploit the fine-grain 

data parallelism. We first give a parallel simulator and discuss 

the performance trade-offs related to small amount of shared 

memory and the atomic operations on GPU. We then give the 

second simulator by adapting the first based on the 

characteristics of spatial locality with on-chip memory 

redesign. We analyze the balance between the kernel time and 

the non-kernel overhead in the two simulators and observe the 

inflection points in terms of two crucial model parameters. A 

selection table is given to choose between the two simulators. 

Benchmarks corresponding to the data parallelism are 

developed to fully evaluate the performance. The parallel 

simulator reports one to two orders of magnitude speedups 

with a maximum of 270 × compared to the widely-used 

sequential simulators and the average speedup is around 97 

times. The adaptive simulator achieved up to 1.8× compared 

with the parallel one over the inflection point. The developed 

code is currently used for simulating complex star images in a 

realistic large-scale star simulator. 

Keywords- GPU computing; star image; CUDA; intensity 

model; blur effect 

I. INTRODUCTION 

Star simulator is an important aerospace simulation 
application, which produces real-time star imaging under 
any time and any attitude from the ground. The star image 
can be used in many devices, such as star sensor [1], an 
important instrument of attitude determination on satellite 

that primarily uses star image for real-time attitude 
adjustment. In addition, a star simulator can also produce 
the celestial star background, widely used in space 
environment simulation systems. The intensity model is a 
crucial part of star image simulation. In order to achieve the 
realistic and accurate star imaging, the point spread function 
(PSF) has been widely adopted, which depicts the blur 
effect of optic system [2, 3]. Currently, star intensity 
simulation with blur effects takes several seconds or even 
minutes, far from real time, when produced by a large-scale 
star simulator system. The main reason is that realistic 
intensity simulation of a large-scale star image involves 
computationally onerous time-domain solution of thousands 
of blur effect algebraic computations, which must be solved 
for each star of a large-scale star catalogue in the FOV 
(Field of View). Since the 1980s, several simulators and 
software applications for the model have been developed to 
perform this simulation faster for large-scale systems [4, 5, 
6]; the majority of these simulators have been developed for 
sequential architectures using languages such as Pascal, 
prolog or C. Their performance may be significantly 
improved by exploiting parallelism in star image 
simulation. 
Nowadays, GPUs provide a compelling alternative to 

the traditional parallel environments such as cluster of 
multicore CPUs, delivering extremely high floating point 
performance and also a massively parallel framework for 
scientific applications which can exploit their specialized 
architecture [7, 8]. GPUs can support several thousands of 
concurrent threads in a massively parallel environment.  
Current NVIDIA GPUs, for example, contain up to 300 
scalar processing elements per chip [7], they are 
programmed using C and CUDA, which provide a 
convenient way for programmers to develop GPU code. 
Moreover, they have a low cost compared with a multicore 
computer cluster. 



 

 

 
Fig 1. The effect of star brightness on image gray in different scope: in the left part of the figure, every star scatters its brightness into the whole image, even 

out of the bound, which is very time-consuming in calculating the distribution; in the right-side figure, the distribution scope is restricted in a square, i.e. ROI. 

Most of the star’s energy constrained in ROI area.

In this paper, we focus on the parallelization of the 
model and introduce GPU-based intensity model for use in 
large-scale star simulation. Our work includes: a) 
parallelization of intensity simulation on GPUs and 
implementation of a parallel simulator; b) adapting parallel 
simulator to defined problem characteristic and GPU 
architectural idiosyncrasies with on-chip memory redesign; 
c). strategies in achieving high performance of our 
simulators. d). a performance balance analysis to direct the 
choice of two GPU simulators. 
The rest of the paper is structured as follows: In Section 

2 a realistic star intensity model of Gauss blur effect is 
defined. In Section 3 we explain the design details of the 
simulators. In Section 4 we show our experiments and 
performance analysis among the developed simulators; we 
further discuss the characteristic of our simulators. This 
paper ends with several conclusions and ideas for future 
work in Section 5. 

II. MODEL DESCRIPTION 

Star intensity model is defined to illustrate the intensity 
distribution of each star projecting on the space imaging 
device, which finally generates a star image of gray values. 
In this model, star can be considered as point light source 
for its far distance from the imaging device. The star image 
simulation can be considered as the response of imaging 
system of star points. In order to compute star image gray 
value, the brightness of light source must be given. In a star 
catalogue, the brightness of a star can be denoted by its 
magnitude. The brightness of a star and its magnitude can 
be concluded in the formula: 

             ( ) 2.512 mg m A −= ×                (1) 

Where A is the proportion factor, m is the star magnitude 
usually ranged from 0~15, and g is the intensity of the star. 
In realistic space environment, the light energy one star 

as a light source emits always scatters in the space domain. 
To simulate it, a blur effect is proposed in the space science. 
Specifically, the intensity spread by a star point in the image 
contributes the gray value of each pixel in the image. The 
mathematical description of star’s blur effect is called point 
spread function (PSF). In the space camera’s optical system, 
Gauss point spread function [2, 9] (i.e. Gauss blur effect) 

can be used to accurately describe the intensity distribution 
rate of a star in a realistic way, the function holds the 
formula: 
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Where δ  is standard deviation reflecting the width of 

distribution circle, (X, Y) is the center where the intensity 

value of image spot is highest. The point spread distribution 

is obviously spatially symmetrical. ( , )x yµ  is the 

intensity contribution rate the star at (X, Y) exerts at pixel 
(x, y). 

 
Fig 2. A segment of star image based on intensity model with blur effect 

However, a pixel of the image can be determined under 
the process of computing all stars’ intensity distribution at 
the pixel. In realistic large-scale simulator, the stars are in 
great amount and the size of star image is large, this leads to 
a very time-consuming simulation. To address it, the Gauss 
blur formula shows that the intensity distribution of a star to 
a certain pixel reduces drastically when the distance 
between the pixel and the star point expands, therefore, in 
computing the pixel gray value, most simulation systems 
generally adopt the method that the distribution scope is 
restricted, i.e. instead of covering the image plane, the 
coverage of star point’s intensity distribution is imposed on 

a region of interest (ROI)，which is a pixel circle centered 
by star point(see Figure. 1). The radius of the circle is 
relevant with optical parameters to assure good distribution 
effect, and empirically is set within a range from 2~20 



 

 

pixels. Thus, for each star, an intensity distribution ROI is 
created. Only the pixels within ROI can reach the intensity 
distribution from the brightness of the star. 
Here, the intensity distribution of a star on a pixel with 

image coordinate (x, y) can be computed by multiplying the 
star brightness and its intensity distribution rate at the pixel: 

 ( , , ) ( ) ( , )m x y g m x yϕ µ= ×             (3) 

Where the pixel ( , )x y  is restricted into the range of a 

star’s ROI. 
Generally, by setting the Gauss blur parameters, with a 

given number of stars and a fixed star image size; a star 
image can be simulated by implementing above intensity 
model. Fig. 2 shows a segment of simulated star image 
(1024*1024) with 2252 stars projected.  

III. DESIGN OF THE SIMULATOR 

In this section, we will describe the simulators by 
implementing high-performance intensity model. Firstly, we 
explain the previous work we have done to prepare the 
development of parallel simulator on GPU. Then, we 
illustrate the parallel simulator that fully runs the data 
parallelism of intensity model, and introduce several 
strategies in parallelization of the model to achieve a high 
computing performance. Finally, we adapt the parallel 
simulator to defined problem characteristic of spatial 
locality and GPU architectural idiosyncrasies, to implement 
the adaptive simulator by on-chip memory redesign. 

A Design of the baseline simulator: sequential simulator 

As CUDA programming model is based on C language, 
therefore, the first recommend step of developing 
application in CUDA is to start from a baseline algorithm in 
C, where some parts of the sequential program can be 
convertible to be parallelized on the GPU. The sequential 
simulator design is straightforward, based on above 
intensity model. The simulation process can be divided into 
four stages: Star generation, Star brightness computation, 
Pixel computation, and Output. All of these stages are 
sequentially executed in this simulator, constituting a 
single-threaded CPU version of the model. 
Firstly, Star generation is executed, stars in the FOV of 

image plane are retrieved, and each star contains a 
magnitude within the range of 0~15 and the coordinate in 
image plane. Then the simulator executes the Star 
brightness computation stage which calculates the star’s 
brightness following the formula previously explained. The 
Pixel computation stage runs the computation of gray value 
of each pixel at the image sequentially, and finally the 
Output stage sends out the gray value to CPU platform to 
form a picture. 
The input of this simulator is a star dataset, which is 

collected by retrieving stars that locate in the FOV of star 
image from star catalogue. The star obtaining process will 
not be discussed in this paper; detailed description of it can 
be found in [4]. The output pixel gray value will be written 
into a kind of common picture type like JPG, BMP, etc and 

thus a piece of star image is rendered. 

B Design of GPU simulator using CUDA: parallel 

simulator 

1) Parallel strategy 
The intensity model computes the gray value of each 

pixel by accumulating intensity contributions from stars 
within the ROI, and the number of calculations is 
proportional to the product of the total number of pixels and 
stars. Considering that a large-scale star simulator involves 
tens of thousands of stars and millions of image pixels, 
parallization of the intensive computation is meaningful.  
The attributes of the model show that the calculation of 

each pixel gray is independent of the calculation of other 
pixels. The position and magnitude information of each star 
are used many times in calculating its distribution to each 
pixel within its ROI. A good decomposition for the intensity 
model with blur effect is to form subproblems that calculate 
the gray value of each pixel. All of these subproblems can 
be solved in parallel with each other. It fits for a massive 
number of CUDA threads to solve them. 
The key of arranging parallelism is to the way of  

decomposing the calculation work to be performed by each 
unit of parallel execution (a thread in CUDA). There are 
two alternative approaches to organize parallel execution of 
the model: star centric or pixel centric. In pixel centric 
option (in Fig.3 (a)), each thread denotes a pixel and 
calculates the accumulated intensity distributions to this 
pixel from the stars picked out. This would be a poor choice. 
As each thread has to identify all stars to select which ROI 
covers this pixel, and it will lead to many divergences in the 
warp execution. In CUDA, a highly divergent warp of 32 
threads will be very inefficient. The star centric one uses 
each thread denotes a star and calculates the distribution of 
a star on pixels within its ROI. This will be a preferred 
approach, as the divergence in a warp execution is well 
eliminated(in Fig.3 (b)). However, this method will raise 
modification conflict in different threads; we must use 
atomic operations to prevent race conditions caused when a 
pixel locates in several stars’ overlaid ROI. Here the 
overhead on atomic operation can be relieved because the 
possibility of ROI overlaying is relatively low, considering 
that stars in the image are generally scattered. 

.  

Fig 3. Two parallel computing modes: pixel centric (a) and star centric (b); 

(a) shows four stars’ ROI overlaid at one pixel. Each star contributes its 

brightness to this pixel, and there are many other stars whose ROI excludes 
the pixel; (b) shows that a star distributes its brightness to pixels in its ROI. 

2) Star-centric parallel model 
As is depicted above, in star-centric model, each thread 

is used to compute the gray distribution of each star to a 



 

 

pixel in its ROI. However, the calculation of star’s 
distribution on different pixels is also independent and the 
data parallelism among pixels in a star’s ROI also presents. 
Thus, we parallel the model by employing two levels of 
data parallelism to simulate the intensity model fully: 
parallelism among stars (the brightness of a star can be 
computed parallel with other stars) and parallelism among 
pixels inside the ROI of a star (the computation of the 
intensity distribution to a pixel runs independently). The 
parallel manner fits well into CUDA parallel architecture 
which capitalizes fine-grained data parallelism (Shown in 
Fig. 4). Specifically, we identify each star as a thread block 
where each thread represents a pixel in the star’s ROI. Each 
thread block runs parallel in computing the brightness of the 
star it denotes, and an individual thread in the block is 
responsible for computing star’s intensity distribution to the 
pixel it denotes. In the parallel model, more threads, i.e. 
parallel units will be generated by the two-level thread 
arrangement. The model runs in a full data-parallel fashion. 

  

Fig 4. Parallel star-centric intensity model with Gauss blur effect: it 

configures a specific model: the stars num is 36 and ROI size is 3× 3; 

First parallelism exists in block per grid and star per image, Second 

parallelism exists in thread per block and pixel per star’s ROI. 

3) GPU implementation 
The objective of the parallel simulator is to simulate the 

process of gray model for star image, doing this in a parallel 
way whenever is possible. To do that, we use the baseline 
design on the four stages of the gray model computation. 
The first and last stage with little computation-demand is 
developed on the CPU, the same as baseline simulator has 
done; and the two computation stages are off-loaded to the 
GPU to be processed in parallel, developed into a GPU 
kernel. In our implementation, we present several 
performance trade-offs related to small shared memory and 
atomic operations on GPU to achieve high performance of 
the simulator. 
First, we deploy the star centric parallel model in a 

CUDA execution manner. The two-level parallelism of the 
intensity model can be implemented by declaring two 
thread levels: blocks (the number of parallel blocks per 

grid), and threads (the number of threads per block). They 
have different dimensions: the blocks in CUDA can be 
1-dimensional, 2-dimensional, and the threads can be 
1-dimensional, 2-dimensional or 3-dimensional. The 
dimension of each level can be tuned according to specific 
problem domains. For our kernel, we declare the blocks in a 
two-dimensional manner;  the definition will ensure the 
simulation requirements of massive amount of stars in our 
model. The thread organization in each block, i.e. threads 
we have defined also adopts 2-dimensional fashion. The 
reason is that, as is shown in Fig. 5, in part of sequential 
version, two-level loop is used to compute the intensity 
distribution of a star to each pixel in its ROI; each pixel’s 

x or y  coordinate is identified by one loop iterator. The 
two-dimensional threads can perfectly match the two-level 
loop as a parallel alternative. We can get a clear overview of 
the thread hierarchy that is configured to parallel simulate 
our model from Figure 4.  

 
Fig 5. The loop inherent in CPU version: one-loop way in identifying the 

star and two-loop way is used to iterate the pixel in each star’s ROI. 

The model data required for GPU implementation is 
another important part of our simulator. The data containers 
for stars and pixels are firstly produced, as we can expect. 
In addition, we also implement indicator elements in the 
interface of our kernel to prevent the wrong address access 
of parallel threads in the execution context. Specifically, 
two categories of information are passed as parameters to 
ensure a safe data deployment. The first category is the 
parameters of image: the size of image checks cross-bound 
of star’ ROI and a pointer to device memory stores the 
output image pixel. The second one is the star’s parameters: 
starCount that is essential to prevent the index of thread 
blocks from overshooting, and a pointer to device memory 
that provides the information of stars on the image. When 
kernel runs, the data containers will be transferred into GPU 
memory. To exploit high-brandwith of GPU memory 
subsystem, the data organization on GPU is focused. First, 
the star array and pixel array are loaded into the GPU global 
memory. As the threads in a block shared the same star 



 

 

 
Fig 6. The kernel Pseudo-code of parallel simulator on CUDA: each emphasized keyword in black bold type indicates a core technology or key step in 

designing the kernel

information from star array, thus, when loading the stars, all 
threads within the same warp will access data from the 
same contiguous memory, enabling coalesced access. To 
reduce access overhead of global memory, we designates 
one thread per thread block to read the star information and 
others threads shares it in low-latency shared memory. This 
will be described later. Then, for pixel array of image, the 
access behavior of threads is in the fashion of spatial 
locality. Each thread computes the intensity distribution and 
put the result into fixed global memory indicated by its x 
and y thread dimension, this leads to a fixed global memory 
access manner. We will fully take advantage of the 
characteristic of  spatial locality in our adaptive simulator 
by another simulation pipeline.  
The kernel of parallel simulator is executed into two 

consecutive steps: star brightness computation step and 
pixel computation step. The first step calculates the 
brightness of stars, which will be used in computing the 
gray distribution of the stars at the second step. They are 
working together to calculate the pixels value of star image. 
Fig. 6 illustrates the Pseudo-code of kernel. 
At the first step, a star’s magnitude and coordinate are 

accessed by the index of block, i.e. blockId, and the 
brightness of the star is computed parallel in block level. 
The brightness result and coordinate of each star will be 
read by all threads in this thread block. This is because the 

star contributes brightness to every pixel in its ROI, and 
each pixel’s position in ROI is determined by the star’s 
position and the thread index together. Furthermore, the 
values of the star magnitude and position are not modified 
during the brightness computation. This means that the 
brightness value of each star can be computed ahead and 
then together with star’s coordinate, both are stored in the 
on-chip shared memory, which will be available to every 
thread in the thread block. To implement it (See the Fig. 7), 
we identify the first thread in the thread block to compute 
the brightness value of the star and store it in shared 
memory (Step.5 in Fig. 6), and the threads in a thread block 
should be synchronized in case certain thread may read the 
empty shared memory before it is written (Step.6 in Fig. 6). 
By deploying the share memory usage among threads in a 
block, the global memory access frequency will be reduced 
from all threads to one thread per block, and the brightness 
computation is performed only once per block. In GPU, one 
shared memory call costs 1~4 clock cycles while a global 
memory access need 400~600 clock cycles of latency. Thus, 
this strategy will effectively enhance the performance of the 
simulator in both memory access and computation. 
At the second step, the gray value of the pixel that each 

thread represents is calculated. The star brightness and star 
position are used and accessed by reading share memory. 
The star position is read two times (Step.7-8 in Fig.6). To 



 

 

decrease access overhead, each thread first reads the star 
position in share memory into local registers, and then 
accesses the local registers for it (Step.7 in Fig. 6). This will 
relieve the bank collision of share memory generated by 
different threads accessing it simultaneously. After reading 
star coordinate from local registers, each thread calculates 
the pixel coordinate according to its two-dimensional index. 
Following the step, the thread will execute the intensity 
distribution calculation of the star to the pixel, and modify 
the gray of the pixel by adding the intensity distribution 
(Step.8 in Fig. 6). Here, it is noted that the ROI of different 
stars within a short distance is likely to overlap, and the 
operation of pixels in overlapped region will invoke the 
write-collision once different threads change a pixel’s gray 
value simultaneously. To solve it, we employ the atomic 
method by putting an atomic add operration on the pixel. 
This enables parallel threads to safely make concurrent 
modification to the shared data (Step.8 in Fig. 6). However, 
the emergence of latency is caused by queuing for the same 
memory modification. In our model, the stars in simulation 
are distributed relatively scatterly and this translates into a 
relatively small number of threads that are competing for 
simulataneous modification to the same memory address.  
Beyond the execution of the kernel, we need to transfer 

the image pixel array from GPU global memory into CPU 
memory. This will certainly bring in transmission overhead. 
Similarly, before the execution of kernel, memory transfer 
between host and device also needs. The transmission 
overhead, though inevitable for such hybrid system, should 
be eliminated as low as possible by applying some CUDA 
transmission optimization strategy, which has been 
described a lot in [10].  

 
Fig 7. The on-chip memory use of parallel simulator: (1) threads in a block 

shares the same star brightness. (2). Registers are used to replace share 
memory in frequent memory calls for each thread. 

C Adapting parallel simulator to the specific problem 

characteristic: adaptive simulator 

Usually, a star simulator will be labeled with a star 
magnitude range which indicates its detecting ability of star 
in celestial environment. For star map simulation, it means 
a determined range of star brightness. A fixed-length array 
can be used to store the star brightness of different star 
magnitudes. Similarly, the size of ROI representing the 
optical performance is also fixed for a star simulator. Thus, 
we can compute a star’s intensity distribution in its ROI and 
store it in a two-dimensional matrix. With a fixed star 
magnitude and side of ROI, we can build a 

three-dimensional lookup table which contains each 
magnitude of a star and its intensity distribution matrix. A 
pre-built lookup table ahead of the kernel execution can 
shift part computation task from the kernel method into the 
memory access of the table. As we can expect, there might 
exist a performance balance between the shift process. This 
manner decreases the kernel execution time meanwhile 
increasing the non-kernel overhead in building and memory 
accessing of the lookup table. And this issue will be 
carefully studied in our performance analysis in Section 4. 
The building process of lookup table is shown in Fig. 8. We 
store the search tables in texture memory of GPU. There are 
two reasons. First, the thread access of the table has the 
character of 2D spatial locality, as we have illustrated in 
Figure. 4. This makes use of one advantage of texture 
memory access manner which capitalizes 2D locality, 
enabling a higher access bandwidth in such condition. 
Second, the texture memory has the texture (L2) cache, 
which will speed up the access when the same star data in 
lookup table has been accessed several times. 
In implementation of the simulator, the parallel strategy 

and star-centric model is applied in the same way as the 
parallel simulator does; but for the kernel method, the 
computation of star brightness and distribution of star on its 
ROI will be replaced by accessing the search table in 
texture memory. Then, the content of shared memory kernel 
method is also changed by storing star magnitude instead.  
Our source code for both CPU and GPU versions are 

freely available to download from a web page [11], and the 
terms of use are included in the code packet. 

 
Fig 8. The process of building lookup table. 

IV. PERFORMANCE ANALYSIS AND 

DISCUSSION 

In this section, we analyze the performance of the three 
simulators presented above: the sequential simulator 
developed in C++, the parallel simulator and the adaptive 
simulator both on GPU using CUDA. The GPU used for the 
experiments is a NVIDIA GPU GTX480 which has 480 
execution SPs and 1.5 GB of device memory, plugged in a 
computer server with an Intel core i7 @2.80GHz CPU and 



 

 

3.5 GB of RAM. Although the CPU has eight cores, to 
accurately control the execution of sequential simulator and 
to have a clear comparison, we only employ one of the 
eight cores to run the sequential code on CPU. The CUDA 
programming version we adopt is version 3.2. 
We developed two benchmarks (called test1, test2 

respectively) to analyze the performance behavior of our 
simulators in two ways: increasing the numbers of stars 
simulated on the image (and so the number of thread blocks 
in grid increases) and increasing the side length of ROI (and 
so number of threads per thread blocks increases). In the 
experiment, these stars are the simulated data which have 
been generated randomly. The star information at image 
plane generates in such format file by configuring the two 
parameters: the magnitude of the star, the 2-dimensional 
coordinate in image plane. As is mentioned in Section 3, the 
number of thread blocks is equal to the number of stars in 
the star image; and the number of threads per block 
corresponds to the size of star’s ROI with a 
two-dimensional shape. 

A Benchmark test 1 

 
Fig 9.Simulation performance for sequential, parallel, adaptive simulators: 

test1 

 
Fig 10.Speedup of parallel simulator, adaptive simulator to sequential 

simulator: test1 

 
Fig 11. Kernel time in parallel & adaptive simulator: test1 

 
Fig 12. Non-kernel time in parallel & adaptive simulator: test1 

Fig.9 shows the experimental performance of the 
simulators for test 1, the benchmark of test 1 increases the 
number of stars in the star image until reaching the 
configuration of 2

17
, the number of simulated stars is 

constrained by the available memory of the simulator. The 
size of star’s ROI is fixed to 10× 10, which means 100 
threads per block, and it has also fixed the image size to 
1024× 1024. 
The behavior of three simulators, as shown in Fig. 9, is 

compared. With the number of stars increase, the execution 
time of simulator 1 increases linearly in a fast-ascending 
manner while the time consumption of the two GPU 
simulators rises slowly. When the number of threads is low, 
the performance of GPU codes is not advantageous. Due to 
the low data parallelism, we cannot fully take advantage of 
the massive computing resources available on the GPU. 
However, as long as the number of stars increases, the data 
parallelism of the simulation increases quickly; GPU 
computation cores are less idle, and this translates into the 
better performance of parallel GPU code. Fig. 10 shows the 
application speedup of the two GPU simulators compared 
to sequential one. The parallel simulator achieves a better 
speedup than the adaptive simulator at the early stage; with 
the increasing stars, the adaptive simulator catches the 
parallel one and overtakes it much when stars reaches 
2
17
 .The speedup updating condition is determined by the 

dynamic time variation of the simulators’ execution parts.  
Fig.11 and Fig.12 shows the breakdown of the two GPU 
simulators. When the number of stars is less than 2

13
 , the  



 

 

TABLE I.  THE BREAKDOWN OF NON-KERNEL PART FOR ADAPTIVE SIMULATOR: TEST1 

kernel execution time of simulators increases little, 
remaining a small value, and the non-kernel overhead takes 
up most part of application time. As the adaptive simulator 
needs to build the lookup table in the texture memory, this 
leads to more non-kernel overhead in adaptive simulator 
than that in the parallel one, and it translates into the lower 
speedup of adaptive simulator at the early stage. In table 1, 
we can see the detailed breakdown of non-kernel overhead 
for adaptive simulator. The time of lookup table building 
and texture binding varies a little due to the constant side of 
ROI, but the two overhead constitutes the disadvantage part 
of adaptive simulator in non-kernel simulator. Based on the 
breakdown of each simulator, we can further analyze the 
variation condition of two GPU simulator’s behavior. As the 
number of stars increases, the kernel time rises in a rocket 
way compared to its non-kernel overhead (See Fig. 11). The 
parallel simulator costs much more time than the adaptive 
one in kernel execution due to its more computing operators. 
For parallel simulator, the time advantage in non-kernel part 
(Fig. 12) at the early stage can’t catch the increasing time 
disadvantage in kernel execution when the number of star 
continues to increase. This translates into the higher 
application overhead for parallel simulator than the adaptive 
one in later stage. In Table 2, we show the peak flop count 
of two GPU simulators’ kernel execution (num of stars is 
2
17
). The adaptive simulator has a lower GFlops due to the 

less computing operators and more memory call. Though 
the adopted GPU chip has a theoretic peak GFlops of 168, 
considering the frequent memory calls and kernel context 
overhead, the achieved arithematic float speed of the two 
simulators is good. In terms of application-level throughout, 
the implementation of parallel simulator can process 9.507 
billion float computations on pixel per second. 

TABLE II.  THE EXECUTION GFLOPS : TEST1 

 

B Benchmark test 2 

The benchmark of test 2 increases the side length of 
ROI until reaching a configuration of 32× 32. The area of 
ROI equals the number of threads per block, so the side 
length of ROI is constrained by CUDA’s computation 
capacity (GTX480 is 2.0), indicating that the maximum of 
threads per block is 1024. The number of stars in the 
simulation is fixed to 8192, which means 8192 blocks per 
grid. The simulated image size is1024× 1024.  
Fig. 13 shows the experimental performance of the three 

simulators for test 2. The cost of sequential simulator 

increases in a linear way, which is expected. The two GPU 
simulators have a similar application cost of the simulation. 
The application speedup of GPU simulators is showed in 
Fig. 14. With the early increase in the side of ROI, the 
parallel simulator has a minor time advantage compared to 
the adaptive one due to the extra overhead of building 
lookup table in adaptive simulator. However, when the side 
of ROI reaches 10, the performance condition of the two 
simulators has changed. The adaptive simulator begins to 
overtake the parallel one in speedup. This behavior 
variation can be explained by the time breakdown of each 
GPU simulator. Fig.15 shows the kernel time and 
non-kernel overhead of the two simulators. When the side 
of ROI is small, the non-kernel overhead has occupied the 
most share of application time for both simulators. The 
parallel simulator has a lower cost on non-kernel part of the 
two, and this translates into its speedup advantage at this 
stage. However, with the increasing side of ROI, the time 
share of different parts in application time is changing. The 
kernel execution percentage is rising up with a fast drop of 
non-kernel time share for both simulators.  

 
Fig 13. The overall performance for sequential, parallel, adaptive 

simulators: test2 

 
Fig 14. Speedup of GPU simulators to sequential simulator: test2 



 

 

Fig. 16 shows the variation of non-kernel time 
percentage in application time. The percentage of 
non-kernel overhead in parallel simulator drops faster 
because the kernel execution time has gone up much more 
quickly than that of the adaptive one. With the trend going 
until the side of ROI reaches 10, the inflection point 
emerges. The faster-increasing kernel time of parallel 
simulator has directly enabled the exchange of speedup 
advantage between two GPU simulators. In test2, when side 
of ROI reaches 14, we report up to a speedup of 163×  
between the parallel and sequential simulators. For adaptive 
and sequential simulators, we achieve a speedup of nearly 
200× . 

 
Fig 15. Breakdown of parallel simulator, adaptive simulator: test2 

 

 
Fig 16. Percentage of non-kernel overhead for parallel simulator, adaptive 

simulator: test2 

C Inflection point observation 

The adaptive simulator has shifted the execution of star 
distribution with fixed star magnitude range from kernel 
into texture memory access by creating a lookup table in 
texture memory, and the parallel simulator has take the lead 
on performance when computation scale is not very large 
due to its advantage in non-kernel overhead compared to 
the adaptive one. However, the adaptive simulator overtakes 
the parallel one when computation scale becomes larger in 
terms of a large star number or side of ROI. As is shown in 
Figure. 10, in test 1, the side of ROI is fixed as 10, the 
inflection point comes when number of stars reach 2

13
 ; In 

test 2 (see Figure. 14), the number of stars is fixed as 8192 
(2
13
), the inflection point comes when side of ROI meets 10. 

The two tests accord perfectly in the value of two model 
parameters at the inflection point, which should be achieved, 
or else, there must be mistakes in either simulator. From the 
standpoint of an end user, the inflection point is meaningful 
as it can direct you in selecting the best simulator that fits 
the star image simulation. The simulator selection criteria 
for different model parameters is showed in Table. 3. 
Obviously, a fixed parameter with the other tunable one 
translates into different selections of GPU simulators. 

TABLE III.  THE GPU SIMULATOR SELECTION 

 

D Discussion 

Based on the developed simulators, we have evaluated 
the performance of each simulator’s behavior. To fully 
understand our simulators, here we’d like to discuss the 
limitation of our simulators in simulation scale and factors 
that affects performance. In our parallel strategy for 
intensity model, we adopt the star-centric simulation way. 
Correspondingly, the thread arrangement of kernel is 
designed to run the two-dimensional data parallelism of the 
model in GPU inherent thread fashion. The threads in a 
thread block are assigned to map the pixels in ROI. We 
know that the thread block has a maximum of 1024 threads, 
and this translates into the limitation on the size of ROI. 
The parallel simulator limits the scale of ROI, i.e. the size 
should be under 16. In most cases, the simulator is applied 
well, but the limit should be noted when using the parallel 
simulator. Besides, the adaptive simulator is dependent on 
the lookup table in texture memory. The texture memory is 
a limited on-chip resource even though latest GPU provides 
a bit more available texture memory size. Thus, we should 
first determine the size of lookup table to assure that it can 
be successfully bound into the GPU texture memory. As the 
maximum size of ROI is determined, we can calculate the 
maximum star magnitude range that the simulator can 
simulate with the fixed size of texture memory in a specific 
version of GPU chip. When building the lookup table, we 
run it in CPU platform instead of GPU kernel, due to the 
small execution overhead and little data parallelism. It is 
also necessary to remark that the non-kernel overhead 
occupies much in overall application time, and when the 
number of threads is low, the percentage is more notable. 
Therefore, when the star image is in a very small-scale 
(num of stars : 0~2

7
), the sequential simulator on CPU can 

be a competent choice with a relatively promising 
performance, as this case can not fully take advantage of 
GPU computing power but with an extra pay for 



 

 

communication overhead in such hybrid system. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we have designed and analyzed three 
simulators for simulating intensity model in large-scale star 
imaging. The first simulator performs sequentially the 
computation of intensity model on the CPU. The other two 
simulators (parallel simulator, adaptive simulator) have 
been developed on the GPU. The parallel simulator fully 
simulates the data parallelism of the intensity model with 
several optimized parallel strategies. The adaptive simulator 
adapts the parallel simulator to the GPU architecture 
idiosyncrasies and problem characteristic. 
 Doing this, we report up to 270× of speedup between 

parallel simulator and sequential simulator, and up to 1.8×  
between two GPU simulators. In this work, we show two 
results. On one hand, our experimental results demonstrate 
that GPUs are good platforms to simulate star image due to 
the highly data parallelism presented in the model. On the 
other hand, if the parallel simulation behaviors are 
redesigned by using on-chip textured memory to be adapted 
to the GPU architecture idiosyncrasies and characteristic of 
spatial locality, the performance of the simulations can also 
be improved. However, there exists a balance between the 
non-kernel overhead and kernel execution in GPU 
simulators. We provide the performance inflection point of 
the two GPU simulators to direct the selection between 
them.  
We also mention that our simulator presented has 

limitation on the available resources on the GPU (device 
memory, PCI-E between GPU and CPU) in two ways: the 
texture memory size limits the scale of lookup table in 
adaptive simulator, and thread number per thread block on 
GPU limits the size of ROI in star image simulation. This 
can be improved with the development of GPU general 
computing; the current capacity of our simulator can 
support the existing model requirement in realistic star 
image simulation. Now the clusters of GPUs provide a 

higher massively parallel environment [12，13]. Our future 
work will focus on scaling our simulators to multiple GPUs 
in order to obtain better performance and also more 
memory space for our simulation. 
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