

Implementing High-performance Intensity Model with Blur Effect on GPUs for

Large-scale Star Image Simulation

Chao Li
1+
, Yunquan Zhang

2
, Changwen Zheng

1
, Xiaohui Hu

1

1
National Key Laboratory of Integrated Information System Technology

2
Parallel Computing Laboratory

Institute of Software, Chinese Academy of Sciences, Beijing, China

{lichao09, yunquan, changwen, hxh} @ iscas.ac.cn

Abstract—Intensity model with blur effects are widely

employed to accurately simulate the imaging process of a star

simulator used for attitude determination and guiding

feedback. The model is computationally intensive and the time

requirements are proportional to the number of stars in the

simulation, imposing great demands of computing power for

realistic uses.

This paper presents two star simulators using Graphic

Processing Units (GPUs). We analyze the parallelism inherent

in the intensity model and leverage a massive number of

computing cores on GPU to efficiently exploit the fine-grain

data parallelism. We first give a parallel simulator and discuss

the performance trade-offs related to small amount of shared

memory and the atomic operations on GPU. We then give the

second simulator by adapting the first based on the

characteristics of spatial locality with on-chip memory

redesign. We analyze the balance between the kernel time and

the non-kernel overhead in the two simulators and observe the

inflection points in terms of two crucial model parameters. A

selection table is given to choose between the two simulators.

Benchmarks corresponding to the data parallelism are

developed to fully evaluate the performance. The parallel

simulator reports one to two orders of magnitude speedups

with a maximum of 270 × compared to the widely-used

sequential simulators and the average speedup is around 97

times. The adaptive simulator achieved up to 1.8× compared

with the parallel one over the inflection point. The developed

code is currently used for simulating complex star images in a

realistic large-scale star simulator.

Keywords- GPU computing; star image; CUDA; intensity

model; blur effect

I. INTRODUCTION

Star simulator is an important aerospace simulation
application, which produces real-time star imaging under
any time and any attitude from the ground. The star image
can be used in many devices, such as star sensor [1], an
important instrument of attitude determination on satellite

that primarily uses star image for real-time attitude
adjustment. In addition, a star simulator can also produce
the celestial star background, widely used in space
environment simulation systems. The intensity model is a
crucial part of star image simulation. In order to achieve the
realistic and accurate star imaging, the point spread function
(PSF) has been widely adopted, which depicts the blur
effect of optic system [2, 3]. Currently, star intensity
simulation with blur effects takes several seconds or even
minutes, far from real time, when produced by a large-scale
star simulator system. The main reason is that realistic
intensity simulation of a large-scale star image involves
computationally onerous time-domain solution of thousands
of blur effect algebraic computations, which must be solved
for each star of a large-scale star catalogue in the FOV
(Field of View). Since the 1980s, several simulators and
software applications for the model have been developed to
perform this simulation faster for large-scale systems [4, 5,
6]; the majority of these simulators have been developed for
sequential architectures using languages such as Pascal,
prolog or C. Their performance may be significantly
improved by exploiting parallelism in star image
simulation.
Nowadays, GPUs provide a compelling alternative to

the traditional parallel environments such as cluster of
multicore CPUs, delivering extremely high floating point
performance and also a massively parallel framework for
scientific applications which can exploit their specialized
architecture [7, 8]. GPUs can support several thousands of
concurrent threads in a massively parallel environment.
Current NVIDIA GPUs, for example, contain up to 300
scalar processing elements per chip [7], they are
programmed using C and CUDA, which provide a
convenient way for programmers to develop GPU code.
Moreover, they have a low cost compared with a multicore
computer cluster.

Fig 1. The effect of star brightness on image gray in different scope: in the left part of the figure, every star scatters its brightness into the whole image, even

out of the bound, which is very time-consuming in calculating the distribution; in the right-side figure, the distribution scope is restricted in a square, i.e. ROI.

Most of the star’s energy constrained in ROI area.

In this paper, we focus on the parallelization of the
model and introduce GPU-based intensity model for use in
large-scale star simulation. Our work includes: a)
parallelization of intensity simulation on GPUs and
implementation of a parallel simulator; b) adapting parallel
simulator to defined problem characteristic and GPU
architectural idiosyncrasies with on-chip memory redesign;
c). strategies in achieving high performance of our
simulators. d). a performance balance analysis to direct the
choice of two GPU simulators.
The rest of the paper is structured as follows: In Section

2 a realistic star intensity model of Gauss blur effect is
defined. In Section 3 we explain the design details of the
simulators. In Section 4 we show our experiments and
performance analysis among the developed simulators; we
further discuss the characteristic of our simulators. This
paper ends with several conclusions and ideas for future
work in Section 5.

II. MODEL DESCRIPTION

Star intensity model is defined to illustrate the intensity
distribution of each star projecting on the space imaging
device, which finally generates a star image of gray values.
In this model, star can be considered as point light source
for its far distance from the imaging device. The star image
simulation can be considered as the response of imaging
system of star points. In order to compute star image gray
value, the brightness of light source must be given. In a star
catalogue, the brightness of a star can be denoted by its
magnitude. The brightness of a star and its magnitude can
be concluded in the formula:

 () 2.512 mg m A −= × (1)

Where A is the proportion factor, m is the star magnitude
usually ranged from 0~15, and g is the intensity of the star.
In realistic space environment, the light energy one star

as a light source emits always scatters in the space domain.
To simulate it, a blur effect is proposed in the space science.
Specifically, the intensity spread by a star point in the image
contributes the gray value of each pixel in the image. The
mathematical description of star’s blur effect is called point
spread function (PSF). In the space camera’s optical system,
Gauss point spread function [2, 9] (i.e. Gauss blur effect)

can be used to accurately describe the intensity distribution
rate of a star in a realistic way, the function holds the
formula:

2 2

2 2

1 () ()
(,) exp[]

2 2

x X y Y
x yµ

πδ δ

− + −
= − (2)

Where δ is standard deviation reflecting the width of

distribution circle, (X, Y) is the center where the intensity

value of image spot is highest. The point spread distribution

is obviously spatially symmetrical. (,)x yµ is the

intensity contribution rate the star at (X, Y) exerts at pixel
(x, y).

Fig 2. A segment of star image based on intensity model with blur effect

However, a pixel of the image can be determined under
the process of computing all stars’ intensity distribution at
the pixel. In realistic large-scale simulator, the stars are in
great amount and the size of star image is large, this leads to
a very time-consuming simulation. To address it, the Gauss
blur formula shows that the intensity distribution of a star to
a certain pixel reduces drastically when the distance
between the pixel and the star point expands, therefore, in
computing the pixel gray value, most simulation systems
generally adopt the method that the distribution scope is
restricted, i.e. instead of covering the image plane, the
coverage of star point’s intensity distribution is imposed on

a region of interest (ROI)，which is a pixel circle centered
by star point(see Figure. 1). The radius of the circle is
relevant with optical parameters to assure good distribution
effect, and empirically is set within a range from 2~20

pixels. Thus, for each star, an intensity distribution ROI is
created. Only the pixels within ROI can reach the intensity
distribution from the brightness of the star.
Here, the intensity distribution of a star on a pixel with

image coordinate (x, y) can be computed by multiplying the
star brightness and its intensity distribution rate at the pixel:

 (, ,) () (,)m x y g m x yϕ µ= × (3)

Where the pixel (,)x y is restricted into the range of a

star’s ROI.
Generally, by setting the Gauss blur parameters, with a

given number of stars and a fixed star image size; a star
image can be simulated by implementing above intensity
model. Fig. 2 shows a segment of simulated star image
(1024*1024) with 2252 stars projected.

III. DESIGN OF THE SIMULATOR

In this section, we will describe the simulators by
implementing high-performance intensity model. Firstly, we
explain the previous work we have done to prepare the
development of parallel simulator on GPU. Then, we
illustrate the parallel simulator that fully runs the data
parallelism of intensity model, and introduce several
strategies in parallelization of the model to achieve a high
computing performance. Finally, we adapt the parallel
simulator to defined problem characteristic of spatial
locality and GPU architectural idiosyncrasies, to implement
the adaptive simulator by on-chip memory redesign.

A Design of the baseline simulator: sequential simulator

As CUDA programming model is based on C language,
therefore, the first recommend step of developing
application in CUDA is to start from a baseline algorithm in
C, where some parts of the sequential program can be
convertible to be parallelized on the GPU. The sequential
simulator design is straightforward, based on above
intensity model. The simulation process can be divided into
four stages: Star generation, Star brightness computation,
Pixel computation, and Output. All of these stages are
sequentially executed in this simulator, constituting a
single-threaded CPU version of the model.
Firstly, Star generation is executed, stars in the FOV of

image plane are retrieved, and each star contains a
magnitude within the range of 0~15 and the coordinate in
image plane. Then the simulator executes the Star
brightness computation stage which calculates the star’s
brightness following the formula previously explained. The
Pixel computation stage runs the computation of gray value
of each pixel at the image sequentially, and finally the
Output stage sends out the gray value to CPU platform to
form a picture.
The input of this simulator is a star dataset, which is

collected by retrieving stars that locate in the FOV of star
image from star catalogue. The star obtaining process will
not be discussed in this paper; detailed description of it can
be found in [4]. The output pixel gray value will be written
into a kind of common picture type like JPG, BMP, etc and

thus a piece of star image is rendered.

B Design of GPU simulator using CUDA: parallel

simulator

1) Parallel strategy
The intensity model computes the gray value of each

pixel by accumulating intensity contributions from stars
within the ROI, and the number of calculations is
proportional to the product of the total number of pixels and
stars. Considering that a large-scale star simulator involves
tens of thousands of stars and millions of image pixels,
parallization of the intensive computation is meaningful.
The attributes of the model show that the calculation of

each pixel gray is independent of the calculation of other
pixels. The position and magnitude information of each star
are used many times in calculating its distribution to each
pixel within its ROI. A good decomposition for the intensity
model with blur effect is to form subproblems that calculate
the gray value of each pixel. All of these subproblems can
be solved in parallel with each other. It fits for a massive
number of CUDA threads to solve them.
The key of arranging parallelism is to the way of

decomposing the calculation work to be performed by each
unit of parallel execution (a thread in CUDA). There are
two alternative approaches to organize parallel execution of
the model: star centric or pixel centric. In pixel centric
option (in Fig.3 (a)), each thread denotes a pixel and
calculates the accumulated intensity distributions to this
pixel from the stars picked out. This would be a poor choice.
As each thread has to identify all stars to select which ROI
covers this pixel, and it will lead to many divergences in the
warp execution. In CUDA, a highly divergent warp of 32
threads will be very inefficient. The star centric one uses
each thread denotes a star and calculates the distribution of
a star on pixels within its ROI. This will be a preferred
approach, as the divergence in a warp execution is well
eliminated(in Fig.3 (b)). However, this method will raise
modification conflict in different threads; we must use
atomic operations to prevent race conditions caused when a
pixel locates in several stars’ overlaid ROI. Here the
overhead on atomic operation can be relieved because the
possibility of ROI overlaying is relatively low, considering
that stars in the image are generally scattered.

.

Fig 3. Two parallel computing modes: pixel centric (a) and star centric (b);

(a) shows four stars’ ROI overlaid at one pixel. Each star contributes its

brightness to this pixel, and there are many other stars whose ROI excludes
the pixel; (b) shows that a star distributes its brightness to pixels in its ROI.

2) Star-centric parallel model
As is depicted above, in star-centric model, each thread

is used to compute the gray distribution of each star to a

pixel in its ROI. However, the calculation of star’s
distribution on different pixels is also independent and the
data parallelism among pixels in a star’s ROI also presents.
Thus, we parallel the model by employing two levels of
data parallelism to simulate the intensity model fully:
parallelism among stars (the brightness of a star can be
computed parallel with other stars) and parallelism among
pixels inside the ROI of a star (the computation of the
intensity distribution to a pixel runs independently). The
parallel manner fits well into CUDA parallel architecture
which capitalizes fine-grained data parallelism (Shown in
Fig. 4). Specifically, we identify each star as a thread block
where each thread represents a pixel in the star’s ROI. Each
thread block runs parallel in computing the brightness of the
star it denotes, and an individual thread in the block is
responsible for computing star’s intensity distribution to the
pixel it denotes. In the parallel model, more threads, i.e.
parallel units will be generated by the two-level thread
arrangement. The model runs in a full data-parallel fashion.

Fig 4. Parallel star-centric intensity model with Gauss blur effect: it

configures a specific model: the stars num is 36 and ROI size is 3× 3;

First parallelism exists in block per grid and star per image, Second

parallelism exists in thread per block and pixel per star’s ROI.

3) GPU implementation
The objective of the parallel simulator is to simulate the

process of gray model for star image, doing this in a parallel
way whenever is possible. To do that, we use the baseline
design on the four stages of the gray model computation.
The first and last stage with little computation-demand is
developed on the CPU, the same as baseline simulator has
done; and the two computation stages are off-loaded to the
GPU to be processed in parallel, developed into a GPU
kernel. In our implementation, we present several
performance trade-offs related to small shared memory and
atomic operations on GPU to achieve high performance of
the simulator.
First, we deploy the star centric parallel model in a

CUDA execution manner. The two-level parallelism of the
intensity model can be implemented by declaring two
thread levels: blocks (the number of parallel blocks per

grid), and threads (the number of threads per block). They
have different dimensions: the blocks in CUDA can be
1-dimensional, 2-dimensional, and the threads can be
1-dimensional, 2-dimensional or 3-dimensional. The
dimension of each level can be tuned according to specific
problem domains. For our kernel, we declare the blocks in a
two-dimensional manner; the definition will ensure the
simulation requirements of massive amount of stars in our
model. The thread organization in each block, i.e. threads
we have defined also adopts 2-dimensional fashion. The
reason is that, as is shown in Fig. 5, in part of sequential
version, two-level loop is used to compute the intensity
distribution of a star to each pixel in its ROI; each pixel’s

x or y coordinate is identified by one loop iterator. The
two-dimensional threads can perfectly match the two-level
loop as a parallel alternative. We can get a clear overview of
the thread hierarchy that is configured to parallel simulate
our model from Figure 4.

Fig 5. The loop inherent in CPU version: one-loop way in identifying the

star and two-loop way is used to iterate the pixel in each star’s ROI.

The model data required for GPU implementation is
another important part of our simulator. The data containers
for stars and pixels are firstly produced, as we can expect.
In addition, we also implement indicator elements in the
interface of our kernel to prevent the wrong address access
of parallel threads in the execution context. Specifically,
two categories of information are passed as parameters to
ensure a safe data deployment. The first category is the
parameters of image: the size of image checks cross-bound
of star’ ROI and a pointer to device memory stores the
output image pixel. The second one is the star’s parameters:
starCount that is essential to prevent the index of thread
blocks from overshooting, and a pointer to device memory
that provides the information of stars on the image. When
kernel runs, the data containers will be transferred into GPU
memory. To exploit high-brandwith of GPU memory
subsystem, the data organization on GPU is focused. First,
the star array and pixel array are loaded into the GPU global
memory. As the threads in a block shared the same star

Fig 6. The kernel Pseudo-code of parallel simulator on CUDA: each emphasized keyword in black bold type indicates a core technology or key step in

designing the kernel

information from star array, thus, when loading the stars, all
threads within the same warp will access data from the
same contiguous memory, enabling coalesced access. To
reduce access overhead of global memory, we designates
one thread per thread block to read the star information and
others threads shares it in low-latency shared memory. This
will be described later. Then, for pixel array of image, the
access behavior of threads is in the fashion of spatial
locality. Each thread computes the intensity distribution and
put the result into fixed global memory indicated by its x
and y thread dimension, this leads to a fixed global memory
access manner. We will fully take advantage of the
characteristic of spatial locality in our adaptive simulator
by another simulation pipeline.
The kernel of parallel simulator is executed into two

consecutive steps: star brightness computation step and
pixel computation step. The first step calculates the
brightness of stars, which will be used in computing the
gray distribution of the stars at the second step. They are
working together to calculate the pixels value of star image.
Fig. 6 illustrates the Pseudo-code of kernel.
At the first step, a star’s magnitude and coordinate are

accessed by the index of block, i.e. blockId, and the
brightness of the star is computed parallel in block level.
The brightness result and coordinate of each star will be
read by all threads in this thread block. This is because the

star contributes brightness to every pixel in its ROI, and
each pixel’s position in ROI is determined by the star’s
position and the thread index together. Furthermore, the
values of the star magnitude and position are not modified
during the brightness computation. This means that the
brightness value of each star can be computed ahead and
then together with star’s coordinate, both are stored in the
on-chip shared memory, which will be available to every
thread in the thread block. To implement it (See the Fig. 7),
we identify the first thread in the thread block to compute
the brightness value of the star and store it in shared
memory (Step.5 in Fig. 6), and the threads in a thread block
should be synchronized in case certain thread may read the
empty shared memory before it is written (Step.6 in Fig. 6).
By deploying the share memory usage among threads in a
block, the global memory access frequency will be reduced
from all threads to one thread per block, and the brightness
computation is performed only once per block. In GPU, one
shared memory call costs 1~4 clock cycles while a global
memory access need 400~600 clock cycles of latency. Thus,
this strategy will effectively enhance the performance of the
simulator in both memory access and computation.
At the second step, the gray value of the pixel that each

thread represents is calculated. The star brightness and star
position are used and accessed by reading share memory.
The star position is read two times (Step.7-8 in Fig.6). To

decrease access overhead, each thread first reads the star
position in share memory into local registers, and then
accesses the local registers for it (Step.7 in Fig. 6). This will
relieve the bank collision of share memory generated by
different threads accessing it simultaneously. After reading
star coordinate from local registers, each thread calculates
the pixel coordinate according to its two-dimensional index.
Following the step, the thread will execute the intensity
distribution calculation of the star to the pixel, and modify
the gray of the pixel by adding the intensity distribution
(Step.8 in Fig. 6). Here, it is noted that the ROI of different
stars within a short distance is likely to overlap, and the
operation of pixels in overlapped region will invoke the
write-collision once different threads change a pixel’s gray
value simultaneously. To solve it, we employ the atomic
method by putting an atomic add operration on the pixel.
This enables parallel threads to safely make concurrent
modification to the shared data (Step.8 in Fig. 6). However,
the emergence of latency is caused by queuing for the same
memory modification. In our model, the stars in simulation
are distributed relatively scatterly and this translates into a
relatively small number of threads that are competing for
simulataneous modification to the same memory address.
Beyond the execution of the kernel, we need to transfer

the image pixel array from GPU global memory into CPU
memory. This will certainly bring in transmission overhead.
Similarly, before the execution of kernel, memory transfer
between host and device also needs. The transmission
overhead, though inevitable for such hybrid system, should
be eliminated as low as possible by applying some CUDA
transmission optimization strategy, which has been
described a lot in [10].

Fig 7. The on-chip memory use of parallel simulator: (1) threads in a block

shares the same star brightness. (2). Registers are used to replace share
memory in frequent memory calls for each thread.

C Adapting parallel simulator to the specific problem

characteristic: adaptive simulator

Usually, a star simulator will be labeled with a star
magnitude range which indicates its detecting ability of star
in celestial environment. For star map simulation, it means
a determined range of star brightness. A fixed-length array
can be used to store the star brightness of different star
magnitudes. Similarly, the size of ROI representing the
optical performance is also fixed for a star simulator. Thus,
we can compute a star’s intensity distribution in its ROI and
store it in a two-dimensional matrix. With a fixed star
magnitude and side of ROI, we can build a

three-dimensional lookup table which contains each
magnitude of a star and its intensity distribution matrix. A
pre-built lookup table ahead of the kernel execution can
shift part computation task from the kernel method into the
memory access of the table. As we can expect, there might
exist a performance balance between the shift process. This
manner decreases the kernel execution time meanwhile
increasing the non-kernel overhead in building and memory
accessing of the lookup table. And this issue will be
carefully studied in our performance analysis in Section 4.
The building process of lookup table is shown in Fig. 8. We
store the search tables in texture memory of GPU. There are
two reasons. First, the thread access of the table has the
character of 2D spatial locality, as we have illustrated in
Figure. 4. This makes use of one advantage of texture
memory access manner which capitalizes 2D locality,
enabling a higher access bandwidth in such condition.
Second, the texture memory has the texture (L2) cache,
which will speed up the access when the same star data in
lookup table has been accessed several times.
In implementation of the simulator, the parallel strategy

and star-centric model is applied in the same way as the
parallel simulator does; but for the kernel method, the
computation of star brightness and distribution of star on its
ROI will be replaced by accessing the search table in
texture memory. Then, the content of shared memory kernel
method is also changed by storing star magnitude instead.
Our source code for both CPU and GPU versions are

freely available to download from a web page [11], and the
terms of use are included in the code packet.

Fig 8. The process of building lookup table.

IV. PERFORMANCE ANALYSIS AND

DISCUSSION

In this section, we analyze the performance of the three
simulators presented above: the sequential simulator
developed in C++, the parallel simulator and the adaptive
simulator both on GPU using CUDA. The GPU used for the
experiments is a NVIDIA GPU GTX480 which has 480
execution SPs and 1.5 GB of device memory, plugged in a
computer server with an Intel core i7 @2.80GHz CPU and

3.5 GB of RAM. Although the CPU has eight cores, to
accurately control the execution of sequential simulator and
to have a clear comparison, we only employ one of the
eight cores to run the sequential code on CPU. The CUDA
programming version we adopt is version 3.2.
We developed two benchmarks (called test1, test2

respectively) to analyze the performance behavior of our
simulators in two ways: increasing the numbers of stars
simulated on the image (and so the number of thread blocks
in grid increases) and increasing the side length of ROI (and
so number of threads per thread blocks increases). In the
experiment, these stars are the simulated data which have
been generated randomly. The star information at image
plane generates in such format file by configuring the two
parameters: the magnitude of the star, the 2-dimensional
coordinate in image plane. As is mentioned in Section 3, the
number of thread blocks is equal to the number of stars in
the star image; and the number of threads per block
corresponds to the size of star’s ROI with a
two-dimensional shape.

A Benchmark test 1

Fig 9.Simulation performance for sequential, parallel, adaptive simulators:

test1

Fig 10.Speedup of parallel simulator, adaptive simulator to sequential

simulator: test1

Fig 11. Kernel time in parallel & adaptive simulator: test1

Fig 12. Non-kernel time in parallel & adaptive simulator: test1

Fig.9 shows the experimental performance of the
simulators for test 1, the benchmark of test 1 increases the
number of stars in the star image until reaching the
configuration of 2

17
, the number of simulated stars is

constrained by the available memory of the simulator. The
size of star’s ROI is fixed to 10× 10, which means 100
threads per block, and it has also fixed the image size to
1024× 1024.
The behavior of three simulators, as shown in Fig. 9, is

compared. With the number of stars increase, the execution
time of simulator 1 increases linearly in a fast-ascending
manner while the time consumption of the two GPU
simulators rises slowly. When the number of threads is low,
the performance of GPU codes is not advantageous. Due to
the low data parallelism, we cannot fully take advantage of
the massive computing resources available on the GPU.
However, as long as the number of stars increases, the data
parallelism of the simulation increases quickly; GPU
computation cores are less idle, and this translates into the
better performance of parallel GPU code. Fig. 10 shows the
application speedup of the two GPU simulators compared
to sequential one. The parallel simulator achieves a better
speedup than the adaptive simulator at the early stage; with
the increasing stars, the adaptive simulator catches the
parallel one and overtakes it much when stars reaches
2
17
 .The speedup updating condition is determined by the

dynamic time variation of the simulators’ execution parts.
Fig.11 and Fig.12 shows the breakdown of the two GPU
simulators. When the number of stars is less than 2

13
 , the

TABLE I. THE BREAKDOWN OF NON-KERNEL PART FOR ADAPTIVE SIMULATOR: TEST1

kernel execution time of simulators increases little,
remaining a small value, and the non-kernel overhead takes
up most part of application time. As the adaptive simulator
needs to build the lookup table in the texture memory, this
leads to more non-kernel overhead in adaptive simulator
than that in the parallel one, and it translates into the lower
speedup of adaptive simulator at the early stage. In table 1,
we can see the detailed breakdown of non-kernel overhead
for adaptive simulator. The time of lookup table building
and texture binding varies a little due to the constant side of
ROI, but the two overhead constitutes the disadvantage part
of adaptive simulator in non-kernel simulator. Based on the
breakdown of each simulator, we can further analyze the
variation condition of two GPU simulator’s behavior. As the
number of stars increases, the kernel time rises in a rocket
way compared to its non-kernel overhead (See Fig. 11). The
parallel simulator costs much more time than the adaptive
one in kernel execution due to its more computing operators.
For parallel simulator, the time advantage in non-kernel part
(Fig. 12) at the early stage can’t catch the increasing time
disadvantage in kernel execution when the number of star
continues to increase. This translates into the higher
application overhead for parallel simulator than the adaptive
one in later stage. In Table 2, we show the peak flop count
of two GPU simulators’ kernel execution (num of stars is
2
17
). The adaptive simulator has a lower GFlops due to the

less computing operators and more memory call. Though
the adopted GPU chip has a theoretic peak GFlops of 168,
considering the frequent memory calls and kernel context
overhead, the achieved arithematic float speed of the two
simulators is good. In terms of application-level throughout,
the implementation of parallel simulator can process 9.507
billion float computations on pixel per second.

TABLE II. THE EXECUTION GFLOPS : TEST1

B Benchmark test 2

The benchmark of test 2 increases the side length of
ROI until reaching a configuration of 32× 32. The area of
ROI equals the number of threads per block, so the side
length of ROI is constrained by CUDA’s computation
capacity (GTX480 is 2.0), indicating that the maximum of
threads per block is 1024. The number of stars in the
simulation is fixed to 8192, which means 8192 blocks per
grid. The simulated image size is1024× 1024.
Fig. 13 shows the experimental performance of the three

simulators for test 2. The cost of sequential simulator

increases in a linear way, which is expected. The two GPU
simulators have a similar application cost of the simulation.
The application speedup of GPU simulators is showed in
Fig. 14. With the early increase in the side of ROI, the
parallel simulator has a minor time advantage compared to
the adaptive one due to the extra overhead of building
lookup table in adaptive simulator. However, when the side
of ROI reaches 10, the performance condition of the two
simulators has changed. The adaptive simulator begins to
overtake the parallel one in speedup. This behavior
variation can be explained by the time breakdown of each
GPU simulator. Fig.15 shows the kernel time and
non-kernel overhead of the two simulators. When the side
of ROI is small, the non-kernel overhead has occupied the
most share of application time for both simulators. The
parallel simulator has a lower cost on non-kernel part of the
two, and this translates into its speedup advantage at this
stage. However, with the increasing side of ROI, the time
share of different parts in application time is changing. The
kernel execution percentage is rising up with a fast drop of
non-kernel time share for both simulators.

Fig 13. The overall performance for sequential, parallel, adaptive

simulators: test2

Fig 14. Speedup of GPU simulators to sequential simulator: test2

Fig. 16 shows the variation of non-kernel time
percentage in application time. The percentage of
non-kernel overhead in parallel simulator drops faster
because the kernel execution time has gone up much more
quickly than that of the adaptive one. With the trend going
until the side of ROI reaches 10, the inflection point
emerges. The faster-increasing kernel time of parallel
simulator has directly enabled the exchange of speedup
advantage between two GPU simulators. In test2, when side
of ROI reaches 14, we report up to a speedup of 163×
between the parallel and sequential simulators. For adaptive
and sequential simulators, we achieve a speedup of nearly
200× .

Fig 15. Breakdown of parallel simulator, adaptive simulator: test2

Fig 16. Percentage of non-kernel overhead for parallel simulator, adaptive

simulator: test2

C Inflection point observation

The adaptive simulator has shifted the execution of star
distribution with fixed star magnitude range from kernel
into texture memory access by creating a lookup table in
texture memory, and the parallel simulator has take the lead
on performance when computation scale is not very large
due to its advantage in non-kernel overhead compared to
the adaptive one. However, the adaptive simulator overtakes
the parallel one when computation scale becomes larger in
terms of a large star number or side of ROI. As is shown in
Figure. 10, in test 1, the side of ROI is fixed as 10, the
inflection point comes when number of stars reach 2

13
 ; In

test 2 (see Figure. 14), the number of stars is fixed as 8192
(2
13
), the inflection point comes when side of ROI meets 10.

The two tests accord perfectly in the value of two model
parameters at the inflection point, which should be achieved,
or else, there must be mistakes in either simulator. From the
standpoint of an end user, the inflection point is meaningful
as it can direct you in selecting the best simulator that fits
the star image simulation. The simulator selection criteria
for different model parameters is showed in Table. 3.
Obviously, a fixed parameter with the other tunable one
translates into different selections of GPU simulators.

TABLE III. THE GPU SIMULATOR SELECTION

D Discussion

Based on the developed simulators, we have evaluated
the performance of each simulator’s behavior. To fully
understand our simulators, here we’d like to discuss the
limitation of our simulators in simulation scale and factors
that affects performance. In our parallel strategy for
intensity model, we adopt the star-centric simulation way.
Correspondingly, the thread arrangement of kernel is
designed to run the two-dimensional data parallelism of the
model in GPU inherent thread fashion. The threads in a
thread block are assigned to map the pixels in ROI. We
know that the thread block has a maximum of 1024 threads,
and this translates into the limitation on the size of ROI.
The parallel simulator limits the scale of ROI, i.e. the size
should be under 16. In most cases, the simulator is applied
well, but the limit should be noted when using the parallel
simulator. Besides, the adaptive simulator is dependent on
the lookup table in texture memory. The texture memory is
a limited on-chip resource even though latest GPU provides
a bit more available texture memory size. Thus, we should
first determine the size of lookup table to assure that it can
be successfully bound into the GPU texture memory. As the
maximum size of ROI is determined, we can calculate the
maximum star magnitude range that the simulator can
simulate with the fixed size of texture memory in a specific
version of GPU chip. When building the lookup table, we
run it in CPU platform instead of GPU kernel, due to the
small execution overhead and little data parallelism. It is
also necessary to remark that the non-kernel overhead
occupies much in overall application time, and when the
number of threads is low, the percentage is more notable.
Therefore, when the star image is in a very small-scale
(num of stars : 0~2

7
), the sequential simulator on CPU can

be a competent choice with a relatively promising
performance, as this case can not fully take advantage of
GPU computing power but with an extra pay for

communication overhead in such hybrid system.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed and analyzed three
simulators for simulating intensity model in large-scale star
imaging. The first simulator performs sequentially the
computation of intensity model on the CPU. The other two
simulators (parallel simulator, adaptive simulator) have
been developed on the GPU. The parallel simulator fully
simulates the data parallelism of the intensity model with
several optimized parallel strategies. The adaptive simulator
adapts the parallel simulator to the GPU architecture
idiosyncrasies and problem characteristic.
 Doing this, we report up to 270× of speedup between

parallel simulator and sequential simulator, and up to 1.8×
between two GPU simulators. In this work, we show two
results. On one hand, our experimental results demonstrate
that GPUs are good platforms to simulate star image due to
the highly data parallelism presented in the model. On the
other hand, if the parallel simulation behaviors are
redesigned by using on-chip textured memory to be adapted
to the GPU architecture idiosyncrasies and characteristic of
spatial locality, the performance of the simulations can also
be improved. However, there exists a balance between the
non-kernel overhead and kernel execution in GPU
simulators. We provide the performance inflection point of
the two GPU simulators to direct the selection between
them.
We also mention that our simulator presented has

limitation on the available resources on the GPU (device
memory, PCI-E between GPU and CPU) in two ways: the
texture memory size limits the scale of lookup table in
adaptive simulator, and thread number per thread block on
GPU limits the size of ROI in star image simulation. This
can be improved with the development of GPU general
computing; the current capacity of our simulator can
support the existing model requirement in realistic star
image simulation. Now the clusters of GPUs provide a

higher massively parallel environment [12，13]. Our future
work will focus on scaling our simulators to multiple GPUs
in order to obtain better performance and also more
memory space for our simulation.

ACKNOWLEDGMENT

Authors acknowledge the financial support by a grant
from the National High Technology Research and
Development Program of China (863 Program) (No.
2009AA01Z303). We totally express our thankfulness to
Professor Chen Ding in University of Rochester who helps
this paper a lot. We also thank Jose M. Cecilia for his
insightful work [8]

that gave this article some inspirations.

REFERENCES

[1] Carl Christian LieBe, Star Trackers for Attitude Determination, IEEE
AES Systems Magazine: 10-16, June 1995.

[2] George V.Poropat, Effect of system point spread function, apparent
size, and detector instantaneous field of view on the infrared image
contrast of small objects, Optical Engineering: 2598-2607, October
1993.

[3] Liebe. C.C. , Accuracy performance of star tracker-atutorial, IEEE
Transactions on Aerospace and Electronic Systems: 587—597, April
2002.

[4] Hye-Young KIM, John L. JUNKINS, Self-organizing guide star
selection algorithm for star trackers: thinning method, In Proceedings
of 2002 IEEE Aerospace Conference, pages 2275-2283, March 2002.

[5] Shaodi Zhang, Honghai Sun, Yanjie Wang, Xiaomeng Jia, Hao Chen.
Design of High Precision Star Image Locating Method Used In Star
Sensor Technology. In Proceedings of 2010 International Conference
on Computer, Mechatronics Control and Electronic Engineering,
pages 411-414, May 2010.

[6] Yang Yan-de Wang Jiang-yun Zhu Yu-tong. High-Precision
Simulation of Star Map Using Forward Ray Tracing Method. In
proceeding of ninth International Conference on Electronic
Measurement & Instruments, pages 541-544, August 2009.

[7] John Nickolls, Michael Garland, Scott Le Grand, etc. parallel
computing experiences with CUDA, IEEE Micro: 13-25, July 2008.

[8] Jose M. Cecilia b, Jose M. Garcia b, Gines D. Guerrerob, etc.
Simulating a P system based efficient solution to SAT by using
GPUs. The Journal of Logic and Algebraic Programming: 317–325,
March 2010.

[9] Liu Tai-yang, Wang Shi-cheng, Liu Xing-miao. Attitude Information
Deduction Based on Single Frame of Blurred Star Image. In
Proceedings of 2nd International Conference on Future Computer
and Communication, pages 642-646, May 2010.

[10] NVIDIA, NVIDIA CUDA Programming Guide 3.2, 2010.

[11] Http://gucas.academia.edu/chaoli/Teaching/25421/CPU_AND_GPU
_CODE_on_Intensity_model_with_blur_effect

[12] Y. Chen, E. Li, J. Li, and Y. Zhang. Accelerating videofeature
extractions in cbvir on multi-core systems, Intel Technology
Journal, vol. 11, no. 04, November 2007. [Online].Available:
http://www.nvidia.com/object/cuda get.html

[13] Mamadou. D, Chrysostomos. N, Johnman. K. Large-Scale Semantic
Concept Detection on Manycore Platforms for Multimedia Mining.
In proceedings of 2011 IEEE International Parallel & Distributed
Processing Symposium, pages 384-393, May 2011.

